金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

北师大版初中数学八年级上《轴对称与坐标变化》教学设计

来源:学大教育     时间:2016-07-08 15:20:40


教学设计是老师讲课前制定的设计方案,对学生来说课前预习时阅读教学设计能够提前抓住学习的重点,从而紧跟老师的授课步伐,进而提高学习效率,为了让大家学好八年级数学,下面学大教育网为大家带来北师大版初中数学八年级上《轴对称与坐标变化》教学设计,希望大家能够利用好这篇教学设计。

教学目标

(一)教学知识点

1.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.

2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形.

(二)能力训练要求

1.在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识.

2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.

(三)情感与价值观要求

在探索规律的过程中,提高学生的求知欲和强烈的好奇心.

教学重点

1.理解图形上的点的坐标的变化与图形的轴对称变换之间的关系.

2.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.

教学难点

用坐标表示轴对称.

教学方法

探索发现法.

教具准备

课件,坐标纸.

教学过程

Ⅰ.提出问题,创设情境

[活动1]

1.如图:

(1)观察上图中两个圆脸有什么关系?

(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).

你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?

2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.

(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?

(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?

设计意图:

通过有趣的轴对称图形的研究,激发学生探究坐标特点的好奇心,是一种形到数的探究,接着又从对坐标实施变化,引起图案的变化,使学生在坐标的变化中产生对每对关于x轴、y轴对称的点的坐标规律的探究.

师生行为:

[生]1.(1)观察可发现图中的两个圆脸关于y轴对称.

(2)我们可以设右脸中的左眼为A点,右眼为B点,则A(2,3),B(4,3),嘴角的左右端为D(2,1),C(4,1).根据轴对称的性质,A与A1关于y轴对称,则A1到y轴的距离和A到y轴的距离相等,A1、A到x轴的距离也相等,∵A1在第二象限,∴A1的坐标为(-2,3).

同理,B1、C1、D1的坐标分别为(-4,3)、(-4,1)、(-2,1).

2.师生共同完成

[生]在直角坐标系中根据坐标描出四个点并依次连结如图.A(2,2),B(4,2),C(4,4),D(2,4).

(1)纵坐标不变,横坐标乘以-1,得到相应四个点为A1(-2,2),B1(-4,2),C1(-4,4),D1(-2,4).顺次连结所得到的图案和原图案比较,不难发现它们是关于y轴对称的.

(2)横坐标不变,纵坐标乘以-1,得到相应的四个点为A2(2,-2),B2(4,-2),C2(4,-4),D2(2,-4).顺次连结所得到的图案和原图案比较,可得它们是关于x轴对称的.

[师]A(2,2)与A1(-2,2)关于y轴对称,

B(4,2)与B1(-4,2)关于y轴对称,

C(4,4)与C1(-4,4)关于y轴对称,

D(2,4)与D1(-2,4)关于y轴对称.

那么关于y轴对称的点具有什么规律呢?

A(2,2)与A2(2,-2)关于x轴对称,

B(4,2)与B2(4,-2)关于x轴对称,

C(4,4)与C2(4,-4)关于x轴对称,

D(2,4)与D2(2,-4)关于x轴对称.

北师大版初中数学八年级上《轴对称与坐标变化》教学设计是学大教育网为大家带来的,相信大家通过阅读教学设计能够提高自己的学习能力,更多的数学教学设计请查阅学大教育网,相信会使你的学习成绩得以提高。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956